Sunday, 25 June 2017

Checking a number is product of two prime numbers

If  m and n are positive integer and n is a divisor or factor of m  then there exists a non zero integer p such that :

n * p = m where (n , p , m  > 0) and n | m (Usual notation to show n is divisor of m)

Case : We need to find a if a number is multiplier of two prime numbers  so we need to find n and p such that n * p = m

E.g ,

Input =35  then output = true   [ 35 = 7 * 5 (both are prime numbers)]

Input =21  then output = true  [21 = 7 * 3 ]

Input =20  then output = false [20 = 2 * 10 or 4 *5   not prime numbers]

Code snippet : 

public static boolean checkMultiplierOfPrime(int n){
if( n< 6){
return false;  ///as least number satifying the condition is 6 = 2 * 3
}
int k = (int) Math.sqrt(n);  /////important catch here to find the square root
for (int i = k; i >= 2; i--) {
if(n % i == 0){
int j = n/i;
if(isPrimeNumber(i) && isPrimeNumber(j)){
return true;
}
}
}
return false;
}

 public static boolean isPrimeNumber(int number){
    if(number<=1){
    return false;
    }
    for(int i=2; i<=number/2; i++){
    if(number % i == 0){
    return false;
    }
    }
    return true;
    }


Time Complexity : O(n) for a number of n  , iteration would from 2 to n/2 , hence complexity would be O(n/2) means O(n)

Enjoy the coding !!!!!!
       

No comments:

Post a Comment